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We canonically quantize electrodynamics in the temporal gauge .4, = 0. Realizing com- 
mutation relations in a Hilbert space containing unphysical longitudinal photons, we pay 
special attention to the implementation of Gauss’s law and the attendant normalization 
difficulties for physical states. We then formulate the perturbation series and explicitly 
exhibit equivalence with the standard textbook treatment of the Coulomb gauge. 

1. INTRODUCTION 

Gauge theories dominate the thrust of current thought in theoretical particle 
physics. Indeed, the popular espousal is that all interactions arise through an under- 
lying gauge structure. The distinguishing feature of a gauge theory is the inability 
to express the interaction Hamiltonian density in terms of fields with simple transfor- 
mation properties under the Lorentz group [l]. One necessarily introduces potentials 
which undergo gauge transformation upon change of frame. Physical observables 
are formed from gauge invariant combinations of these fields. 

The appearance of potentials provides problems for quantization because gauge 
transformations do not represent physical degrees of freedom. In a path integral 
approach, Fadde’ev and Popov [2] have shown how to implement a gauge choice so 
that resulting Green’s functions for observables are independent of the particular 
choice made. A demonstration of equivalence with canonical quantization in a 
particular gauge then justifies their anzatz [3]. Nevertheless, from a purely canonical 
point of view the equivalence of various gauges is rather obscure. Indeed, quantum 
spaces of varying character appear in different treatments. For example, an indefinite 
metric space is often used for covariant gauges, while all degrees of freedom are 
physical in the Coulomb gauge. 

Recent analyses of nonperturbative phenomena in non-Abelian gauge theories 
have exposed peculiar complexities of certain gauges. Specification of the Coulomb 
gauge is not unique for large non-Abelian fields [4]. The axial gauge, where a spacelike 
component of the potential is constrained to vanish, requires careful handling of 
surface variables at spatial infinity [5] in order to properly interpret tunneling effects 
associated with the gauge field topology [6]. The one gauge that has stood out in its 
simplicity for interpreting these phenomena is the temporal gauge, where the time 
component of the potential vanishes. 

The temporal gauge carries a canonical Hilbert space larger than the set of states of 
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physical interest. The extra states are associated with the freedom to perform time- 
independent gauge transformations. Such transformations do not affect the gauge 
condition and represent unphysical degrees of freedom that must be eliminated. 
Implementation of Gauss’s law, the generator of such transformations, as a constraint 
on physical states accomplishes this [7-lo]. When massless gauge particles appear in 
the physical spectrum of the theory, one may restrict attention to those time- 
independent gauge transformations that vanish at spatial infinity. It is then possible 
to treat symmetry under the remaining gauge transformations as spontaneously 
broken, in which case the massless gauge bosons represent Goldstone bosons asso- 
ciated with the broken symmetry [9]. When massless particles do not appear, as in 
the Higgs model [l 11, or in a conjectured quark confining phase of non-Abelian 
gauge theory, we expect restoration of these symmetries. 

This paper is concerned with explicitly carrying out canonical quantization of 
conventional electrodynamics in the temporal gauge. We implement Gauss’s law 
through a limiting procedure maintaining the normalizability of physical states. 
We do this first for free photons and then find a complete set of physical states for the 
interacting theory. We set up the perturbation theory on these states and demonstrate 
equivalence with the textbook treatment of the Coulomb gauge [12]. Throughout, 
we ignore as mere technical difficulties those problems common to all gauges, such as 
renormalization of ultraviolet divergences, infrared divergences associated with 
emission of real photons, convergence of the perturbation series [13], and the existence 
of the interaction representation [14]. 

2. FREE PHOTONS 

In Ref. [9] we briefly discussed free photons in the temporal gauge. There we 
ignored formal difficulties in normalizing states in the physical subspace of the 
canonical Hilbert space. Willemsen [lo] has treated this problem by smearing 
Gauss’s law and taking a limit. We go through a similar argument here, rephrasing 
it in terms of the freedom to choose creation and annihilation operators for un- 
physical longitudinal photons. Taking a limit in this choice, we obtain physical 
matrix elements from states containing no longitudinal photons. Only matrix 
elements of gauge invariant operators are well defined in this limit. 

We begin with the Lagrangian density 

8 = -i-F,,Fu, , (2.U 
where 

Fe, = S,A, - &A, . (2.2) 

In the temporal gauge A,, vanishes and the dynamical coordinates are Ai , i = 1,2, 3. 
The conjugate momenta are the components of the electric field 

Ei = t3(iJ,Ai) 
- = Fbi = aoAi . 
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The magnetic field is defined by 

F<j = EijkBk ) 

B=-VxA 
(2.4) 

The Hamiltonian density is 

ST = Ei &4i - 2’ = $(E2 + B2). (2.5) 

The canonical equal-time commutation relations are 

[Ei(X, t), Aj(Y, t)] = -iSJF(x - y). (3.6) 

Commuting various operators with the Hamiltonian H = j d3x 3Eo we obtain the 
equations of motion 

aoAi = i[H, Ai] = Ei , 

i3,Ei = i[H, EJ = ajFji = (V x B)i . 

(2.7) 

CW 

Note that this procedure does not give Gauss’s law V * E = 0 because it does not 
involve time derivatives. Rather, Eq. (2.8) implies 

a,(v - E) = 0 = i[H, V * El. (2.9) 

Because H and V . E commute, they can formally be simultaneously diagonalized. 
In Ref. [9] we defined a state 1 u/) to be physical if it satisfied 

V.E/Y) =O. (2.10) 

Unfortunately in a Hilbert space realizing Eq. (2.6) the operator V * E will have a 
continuous spectrum and consequently its eigenstates are not normalizable. More 
precisely, note that Eq. (2.6) implies 

P I P . E(x, t), &(y, t>] / y> = -i & S3(x - y)<TP 1 Ul>. (2.11) 
. I 

If we now demand Eq. (2.10), the norm of I ul) must vanish. We will solve this 
problem by taking a limit on states where V * E is smeared slightly about zero, 

To implement this program we go to momentum space at a fixed time t = 0 

&i(k) eik.x, 

Ei(x, 0) = I$$ i&(k) eik.x. (2.13) 
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We introduce creation and destruction operators 

A”,(k) = (&f2 (40 adk) + (4-k) ai(-k) (2.14) 

-&(k) = -i (+)“” ((c-l(k))if q(k) - ((c-l(-k))ii ai(-k) (2.15) 

Here k,, = / k I and l ij(k) is a polarization matrix which we will specify further in a 
moment. The canonical commutation relations are equivalent to 

[a,(k), uj+(k’)] = 8#(k - k’). (2.16) 

Of course, only transverse photons are physical; consequently, we will use the 
freedom in defining the polarization tensor cij to eliminate the unwanted longitudinal 
degrees of freedom. Define the transverse projection operator P&k) by 

Pij(k) = 6i, - kikj/k2. 

We choose the polarization tensor 

(2.17) 

+(k) = Pij + (l/4(1 - P)ij , (2.18) 

where CY is a parameter that we will soon vary. The transverse part of E is chosen to 
give the Hamiltonian a simple form in terms of transverse creation and destruction 
operators. Being unphysical, the longitudinal part of E is essentially arbitrary; indeed, 
we could have chosen 01 to be any desired function of k but for simplicity we take a 
constant value. The reason for introducing this parameter is that matrix elements 
involving V * E are proportional to CL 

V * E(x, 0) = (Y 1 $$ (4)“” (k . a(k) - k * a+(-k)) eik.x. (2.19) 

Thus to impose Gauss’s law we are interested in the singular limit of vanishing CC 
It is a matter of convention whether the 01 dependence lies in the states or the 

operators A and E. Putting the 01 dependence in the states, we consider as our Hilbert 
space the Fock space built by application of smeared polynomials in ai+ on the 
“vacuum” state 1 0, LX) satisfying 

49 I 0, a> = 0, (2.20) 

(0, a / 0, cd> = 1 (2.21) 

for all i and k. Here a,(k) carries an implicit 01 dependence from its definition. We now 
define physical matrix elements to be the 01 ---f 0 limit of corresponding matrix 
elements between states 1 Y, a) containing no longitudinal photons; that is, they satisfy 

k . a(k) / Y, a) = 0. (2.22) 
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In Appendix A we construct a unitary operator that shifts 01. Physical quantities 
follow from a singular limit of this operator on states with no longitudinal photons. 

The limit of vanishing 01 does not exist for general gauge variant matrix elements. 
Observe, for example, the l/a2 singularity in 

,.:a. 0 I Ai(X, 0) Aj(Y, 0) I 0, n? 

(2.23) 

Indeed, it is the l/a in the expression for A(x, 0) in terms of creation and destruction 
operators that circumvents the argument below Eq. (2.11) on the nonnormalizability 
of physical states. Thus, in any calculation the limit cy + 0 cannot be taken until one 
completes all steps involving gauge variant operators and has an expression entirely 
in terms of physical quantities. 

The Hamiltonian expressed in terms of creation and annihilation operators reads 

k,{Pija;(k) a?(k) 

+ $x2(1 - &(2ai+(k) a,(k) - q(k) a$(-k) - ai+ a$+(-k))), (2.24) 

where normal ordering has removed an infinite constant zero-point energy. In the 
limit of vanishing 01 the term involving longitudinal photons drops out and we obtain 
the conventional Hamiltonian for free photons. 

The temporal gauge still admits time-independent gauge transformations 

A@, t> - Mx, t> + V44, (3.25) 

where cl(x) is an arbitrary function of the space coordinates. A unitary operator 
implementing this transformation is 

U = exp i 
IJ‘ 

d3x E(x, t) . V&x) , 
I 

(2.26) 
UAW = A c ofI. 

Because the Hamiltonian is gauge invariant, U is time independent and is a symmetry 
operator of the theory. In this paper (in contrast to Ref. [9]) we restrict our discussion 
to n(x) vanishing sufficiently rapidly at spatial infinity so that Eq. (2.27) can be 
partially integrated to give 

U = exp /---i/d3x/1V*El. (2.27) 

By virtue of Gauss’s law V * E vanishes on physical states. More precisely, we have 

(Y, 01 j u / Y, a> = (F, a 1 Y, a” t O(a2). (2.28) 

595/117/z-16 
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Thus physical states are symmetric under local gauge transformations. Since V * E 
generates such transformations, gauge invariant operators respect Gauss’s law and 
take physical states into physical states. 

3. PHYSICAL STATES IN THE INTERACTING THEORY 

We now add charged fermions to the theory and study the Lagrangian density 

B = -fFuvFuY +- ‘a<$ - m)Y, 

where P, = yuD,, , D,, is the covariant derivative 

D,Y = (a, - ieA,)Y, (3.2) 

Y is a four-component Dirac field, Y = Y+y, , and the y matrices satisfy the con- 
ventional anticommutation rules 

The charge e and mass m are, in principle, divergent due to renormalization effects, 
but that will not concern us here. In the temporal gauge the canonical coordinates A6 
and Y with their conjugate momenta Ei and Y+ should satisfy the equal-time commu- 
tation relations 

&(x9 t), MY, 01 = -i&&x - Y), (3.4) 

K+(x, 0, YdY, t)l+ = bW - Y) (3.5) 

with all other combinations commuting or anticommuting, as appropriate. The 
Hamiltonian of the theory is 

H = 1 d3x{$(E2 + B2) + !?(-iy * V + m)Y + eA * j}, (3.6) 

where 
j, = Fr,Y. (3.7) 

Both Hand j,, involve products of fields at the same point and consequently need more 
careful definition. As ultraviolet problems are not our prime concern, we relegate 
to Appendix B a discussion of how a point separation method of definition affects 
the remaining arguments of this paper. 

Equations of motion follow from commutators with the Hamiltonian 

&,A = i[H, A] = E, (3.8) 

&E=VxB-ej, (3.9) 

a,Y = iy,,(-iy * V + m)Y + iey,A * yY. (3.10) 
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Current conservation is a consequence of Eq. (3.10) 

t3,j, = 0. (3.11) 

As in the last section, Gauss’s law V . E - ej, = 0 does not follow as an equation 
of motion. Rather, from Eqs. (3.9) and (3.1 I) we conclude 

a”( v . E - &) = 0. (3.12j 

We will again use a limiting procedure to impose Gauss’s law on physical states. 
For simplicity we will from now on suppress time dependence and work at a fixed 

time t = 0. The Hamiltonian should then be regarded as an operator in a Hiibert 
space manifesting the canonical commutation relations. Solving the theory consists of 
finding the eigenvalues and eigenvectors of this operator. Given such a solution, 
reinsertion of time dependence would be straightforward. 

We begin by noting that the interacting Gauss’s law differs from the free version 
where e = 0 by an operator displacement on V . E. This shift can be accomplished 
using the conjugate variable to E. We are thus led to consider the unitary operator 

V = exp I-& f d3x d3y A(x) . -x_y’3,~o(y), , b - Yj \ 

This operator removes from E the Coulomb field generated by j,, 

VE(x) V-r = E(x.) - & j d3?. ,” 1; 3.$Yj. 

Using the relation 

1 i _-- (.y - .Y)c = *3(x _ yj 
45-r iis, ’ x - y j3 

(3.13) 

(3.14) 

(3.15) 

we obtain 
VV.EV-‘= V-E--j,,. (3.16) 

The reason for these machinations now appears. If we have a set of states on which 
V * E vanishes, then by operating with V on them we obtain a corresponding set of 
states on which V * E - ej, is null. But the whole purpose of the last section was the 
construction of states with vanishing V . E. Consequently, for a physical matrix, 
element in the interacting theory we take the cy + 0 limit of the corresponding matrix 
element between states of form V 1 Y, a> where (Y is the longitudinal photon parameter 
of the last section and i Y, a> contains arbitrary numbers of transverse photons and 
fermions, but no longitudinal photons. The expression of the Dirac free field in terms 
of creation and destruction operators for fermions is standard and need not be 
repeated here [ 121. 

The interacting theory also possesses an invariance under local gauge transformation 
of the form 

A+A+ VA, (3.17) 
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but now Y must change as well 

Y -+ Yf+*. 

Using the commutation relation 

u&4, qY)l = -w a3(x - y), 

(3.18) 

(3.19) 

one can easily verify that the unitary operator 

(3.20) 

implements this transformation in the sense that 

UAU-r = A f VA, 

UyU-l = Ye-fen. 

(3.21) 

(3.22) 

Again assuming that /l(x) vanishes at spatial infinity so that Eq. (3.20) can be partially 
integrated, we see that Gauss’s law generates gauge transformations for the interacting 
theory as well 

d3x n(V . E - ejJ . 
I 

(3.23) 

Thus all the discussion of the previous section on invariance of physical states under 
time-independent gauge transformations repeats itself. 

The operator V of Eq. (3.13) serves to create a Coulomb field around fermions. 
This can be seen by using Eq. (3.19) to show 

x(x) = VU(x) V-l = Y(x) exp 1% 1 d3y , F I:;3 - A(y)/. (3.24) 

The exponential factor is an operator that displaces E by just the Coulomb field of a 
point charge at x. Note also that this combination is gauge invariant; indeed, a local 
gauge transformation in Eq. (3.24) shifts A by a derivative term which upon partial 
integration and use of Eq. (3.15) exactly cancels the phase given Y(x). This means that 
smeared polynomials in x(x) do not take states out of the physical Hilbert space and, 
therefore, represent physical fermion operators. 

We have defined the operator V in such a way that it only involves the longitudinal 
part of A. This follows from rewriting V in the form 

V = exp $ 
I‘ J 

1 
d3x d3yjdx) , x _ y , v * NY)/. 

We could have replaced the kernel (x - y)/I x - y la in Eq. (3.13) with any function 
of x - y satisfying Eq. (3.15). However, use of a purely longitudinal form simplifies 
perturbation theory by preserving the transverse part of the Hamiltonian. 
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4. PERTURBATION THEORY 

Having obtained a prescription for physical matrix elements, we now wish to set 
up a perturbation theory for diagonalization of the Hamiltonian. We start with the 
definition 

Here ET is the transverse part of E, i.e., only the creation and destruction operators 
for transverse photons are included. This operator is diagonalized by the free particle 
states created by the operators of Section 2 plus standard free Dirac creation operators. 
However, as it stands, H,, is not diagonalized by the states of the last section used to 
implement Gauss’s law for the interacting theory. Also, when the coupling e does not 
vanish, HO is not a gauge invariant operator and thus it takes states out of the physical 
subspace. An operator that avoids these difficulties is VH,V-‘. This combination is 
gauge invariant by virtue of the discussion at the end of the last section, and it takes 
the usual free particle form on the states of the last section. We thus are led to define 
an interaction Hamiltonian H, with the relation 

H = VH,I/-l + H, . 

Since H and VH,,V-l are both gauge invariant, HI is as well. 

(4.2) 

We will now express HI in terms of gauge invariant fields and show that it is equal 
to the interaction Hamiltonian of the usual Coulomb gauge treatment of quantum 
electrodynamics [12]. Note that matrix elements of products of the gauge invariant x 
fields between the physical states of the last section equal the corresponding matrix 
elements of P(X) between free fermion states. This ensures that in the perturbative 
expansion one can use free propagators for the fermions. Combining Eqs. (3.6), (4. I), 
and (4.2) we obtain 

HI = j d%{$EL2 + F(-iy . V + m)y - j&-iy * V + m)x + ej * A:, (4.3) 

where EL = E - ET is the longitudinal part of the electric field. From Eq. (3.24) 
we obtain 

F(-iy*V+m)!P--z(-iy’V+m)x = -ej*A,, (4.4) 

where we have used the position space representation of the longitudinal part of ,4 

1 
AL = z v J d3Y 1 x _ y 13 (x - ‘) * A(y). 

In obtaining Eq. (4.4) we have naively taken 

j = VjV-l. (4.6) 
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As j is electrically neutral and the purpose of V is to create Coulomb fields about 
charged operators, Eq. (4.6) physically makes sense. However, caution is in order 
because of possible Schwinger terms [ 151 arising when j is carefully defined. The 
discussion of point separation in Appendix B justifies Eq. (4.4) with a gauge invariant 
definition of j. 

Using Eq. (4.4) in (4.3) we obtain 

HI = I d3x(4EL2 + eAT . j}. (4.7) 

With Gauss’s law we can rewrite EL in terms of j,, 

EL(X) = - & V j d”y 
1 

1 x - y / v * E(y) 

where the 00(a) term is of order 01 when considered in matrix elements between the 
01 states of the last section. Inserting (4.8) in (4.7) yields 

HI = j d3xeAT *i + / d3~d8cv-&jdx) , x i y,h(y) + @(oL). (4.9 

The limit a!-+ 0 is now immediate for gauge invariant Green’s functions. The theory 
has been expressed entirely in terms of physical degrees of freedom; consequentIy 
longitudinal photons can be forgotten and perturbation theory proceeds in a standard 
way. Note that HI in Eq. (4.9) is exactly the interaction Hamiltonian that arises in the 
conventional Coulomb gauge treatment [12]. Thus the two approaches are equivalent. 

5. CONCLUDING REMARKS 

We have demonstrated the equivalence of the temporal and Coulomb gauges for a 
perturbative treatment of canonically quantized electrodynamics. Given the non- 
perturbative problems with other gauges, it would be desirable to have a complete 
canonical treatment of non-Abelian gauge theory in the temporal gauge, Imposition 
of Gauss’s law in this case is a considerably more difficult task. The desired con- 
straints involve a noncommuting set of nonlinear combinations of the gauge fields. 
One approach to finding states satisfying these constraints is that of Goldstone and 
Jackiw 181; however, their technique does not lend itself to an expansion in the 
coupling constant. A perturbative treatment should be important in the study of an 
unconfined electrodynamicslike phase of free gauge mesons. Indeed, understanding 
such a phase ought to precede attempts to avoid it. 
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APPENDIX A: SHIFTING THE PARAMETER a 

Consider the formally unitary operater 

d3x d3y I x 1 y / ‘z P * E(x)> V . WI+/, (Al) 

where [A, B], denotes the anticommutation AB + BA. Being defined in terms of 
longitudinal fields, T commutes with transverse fields. From the canonical commu- 
tation relations we obtain 

$ T-IV . ET = - TplV . ET. C.42~ 

This is easily solved 
T-10 . ET = e-AV * E. 

Similarly we obtain 
T-10 * AT = ef”V * A. 

Thus we conclude that the operator T multiplies cy by e-h 

T 1 Y, a) = 1 ‘ir/, e-b). 

The limit of vanishing 01 corresponds to infinite h. 

(A3) 

(A4) 

(A51 

APPENDIX B: POINT SEPARATION 

The Hamiltonian of Eq. (3.6) involves products of fields at the same space-time 
point. In general such products are singular and need more precise definition. Since 
the interaction is linear in the photon field, any simple definition of the kinetic terms 
+E2 + +B2 will do; a normal ordering with respect to the creation and destruction 
operators of Section 2 is probably the simplest method. The Fermi fields are potentially 
more troublesome due to the well-known Schwinger terms [15] appearing in commu- 
tators among components of the electromagnetic current. 

In this Appendix we treat the fermion operators with a point separation technique. 
We do this in a manner that preserves the gauge invariance of the respective operators. 
Upon separating the coordinates of Y and p in an operator such as j, , we must 
multiply by an operator that creates the dipole field that would physically accompany 
any such real separation. Letting Q be an infinitesimal vector that goes to zero at the 
end of any calculation, we modify definition (3.7) to read 

(BI) 
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where time dependence is suppressed by working at fixed t = 0. The operator V used 
to define physical states is used only through its commutation relations with other 
operators. Consequently, the o used in defining V can be taken to zero immediately. 
Adopting this point of view, we can let the operator V create the dipole field in 
Eq. (W 

j,(x) = vqx + e) y,Y(x) V-f 

= x(x + 4 YUXW (B2) 

The kinetic terms in the Hamiltonian also require definition. Here the derivative 
should not act on the dipole field because the gauge variant term associated with this 
derivative combines with j * A in a gauge invariant way. Thus, in H we define 

!&-i-f - V + m)Y -ex~]sj-d”y( ,x+;-y, - ix:y,)V%9j 

X Y(x + e)(--iy * V + m) Y(x). (B3) 

This is a valid definition of the fermion kinetic terms in the full Hamiltonian, but when 
we want a diagonal VH,,V-l we should use for H,, the free fermion kinetic energy 
where e is taken to zero. Thus, we define 

H,, = 
I 

d3~(g:(EL2 + B2): + !@ + l )(-~Y - V + m) I) G34) 

with no dipole field for the bare fermions. Here the symbols : : denote normal 
ordering with respect to the free photon operators of Section 2. The interaction 
Hamiltonian then becomes 

H’=Sd5x[~:E,2:+exp~~Sd3v( ,x+i-y, - ,,‘y,)v.A/ 

x F(x + E)(--iy * V + m) F(x) - x(x + e)(-iy * V + m) x(x) + ej * A]. 

(W 

The manipulations giving Eq. (4.4) now follow with the dipole factors giving exactly 
the gauge invariant j of Eq. (Bl). Note that Eq. (B2) implies that in the perturbation 
series we should use the x propagator between physical states, but as discussed below 
Eq. (4.3) this equals the bare Y propagator between states of the free theory. 

We finally note that both j and Ho as defined here have vacuum expectation values. 
Appropriate counterterms can remove these; then the resulting definitions in the 
o + 0 limit correspond to conventional normal ordering. 
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